Nuclear import of HIV-1 integrase is inhibited in vitro by styrylquinoline derivatives.

نویسندگان

  • Aurélie Mousnier
  • Hervé Leh
  • Jean-François Mouscadet
  • Catherine Dargemont
چکیده

Nuclear import of HIV-1 preintegration complexes (PICs) allows the virus to infect nondividing cells. Integrase (IN), the PIC-associated viral enzyme responsible for the integration of the viral genome into the host cell DNA, displays karyophilic properties and has been proposed to participate to the nuclear import of the PIC. Styrylquinolines (SQs) have been shown to block viral replication at nontoxic concentrations and to inhibit IN 3'-processing activity in vitro by competing with the DNA substrate binding. However, several lines of evidence suggested that SQs could have a postentry, preintegrative antiviral effect in infected cells. To gain new insights on the mechanism of their antiviral activity, SQs were assayed for their ability to affect nuclear import of HIV-1 IN and compared with the effect of a specific strand transfer inhibitor. Using an in vitro transport assay, we have previously shown that IN import is a saturable mechanism, thus showing that a limiting cellular factor is involved in this process. We now demonstrate that SQs specifically and efficiently inhibit in vitro nuclear import of IN without affecting other import pathways, whereas a specific strand transfer inhibitor does not affect IN import. These data suggest that SQs not only inhibit IN-DNA interaction but would also inhibit the interaction between IN and the cellular factor required for its nuclear import.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, synthesis and anti-HIV integrase evaluation of N-(5-chloro-8-hydroxy-2-styrylquinolin-7-yl)benzenesulfonamide derivatives.

Styrylquinoline derivatives are demonstrated to be HIV-1 integrase inhibitors. On the basis of our previous CoMFA analysis of a series of styrylquinoline derivatives, N-[(2-substituted-styryl)-5-chloro-8-hydroxyquinolin-7-yl]-benzenesulfonamide derivatives were designed and synthesized,and their possible HIV IN inhibitory activity was evaluated.

متن کامل

Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro.

Styrylquinoline derivatives (SQ) efficiently inhibit the 3'-processing activity of integrase (IN) with IC50 values of between 0.5 and 5 microM. We studied the mechanism of action of these compounds in vitro. First, we used steady-state fluorescence anisotropy to assay the effects of the SQ derivatives on the formation of IN-viral DNA complexes independently of the catalytic process. The IC50 va...

متن کامل

Exploring binding mode for styrylquinoline HIV-1 integrase inhibitors using comparative molecular field analysis and docking studies.

AIM To understand pharmacophore properties of styrylquinoline derivatives and to design inhibitors of HIV-1 integrase. METHODS Comparative molecular field analysis (CoMFA) was performed to analyze three-dimensional quantitative structure-activity relationship (3D-QSAR) of styrylquinoline derivatives. Thirty-eight compounds were randomly divided into a training set of 28 compounds and a test s...

متن کامل

Microbial Natural Product Alternariol 5-O-Methyl Ether Inhibits HIV-1 Integration by Blocking Nuclear Import of the Pre-Integration Complex

While Highly Active Antiretroviral Therapy (HAART) has significantly decreased the mortality of human immunodeficiency virus (HIV)-infected patients, emerging drug resistance to approved HIV-1 integrase inhibitors highlights the need to develop new antivirals with novel mechanisms of action. In this study, we screened a library of microbial natural compounds from endophytic fungus Colletotrichu...

متن کامل

Chemistry and structure-activity relationship of the styrylquinoline-type HIV integrase inhibitors.

In spite of significant progress in anti-HIV-1 therapy, current antiviral chemo-therapy still suffers from deleterious side effects and emerging drug resistance. Therefore, the development of novel antiviral drugs remains a crucial issue for the fight against AIDS. HIV-1 integrase is a key enzyme in the replication cycle of the retrovirus since it catalyzes the integration of the reverse transc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 66 4  شماره 

صفحات  -

تاریخ انتشار 2004